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Abstract

We compare the performance of list-type soft-decision Realdmon (RS) decoding algorithms to that of clas-
sical hard-decision RS decoding algorithm on Partial RespdPR) channels. The two soft-decision RS decoding
approaches that we consider, the List-GMD and the Koettedyalgorithm, are both based on Guruswami-Sudan'’s
(polynomial) interpolation approach to polynomial-tinigddecoding. The soft-decision RS decoders take as input
symbol-based reliabilities which can be provided by a sylAflased BCJR algorithm. The symbol-based BCJR
algorithm is an extension of the original BCJR algorithm amadculates thea posteriori probability(APP) of a
block of |-bits. The complexity of the algorithm can be reduced wheriegpo a PR channel. We present a hybrid
Viterbi-BCJR approach that can be used when only the réialoif the most-likely symbol is desired. The hybrid
approach calculates the APP of the most reliable symbobwitthe need to run the complete forward and backward
algorithm. We demonstrate through simulations that seftislon RS decoding will lead to a lower probability of
decoding error. We calculate the complexity of the listating algorithms and quantify the performance and
complexity tradeoff for each approach. Moreover, we shoat tising the symbol-based APPs will yield a lower
word error rate (WER) than using the measures obtained byiptyithg the bit reliabilities.
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I. INTRODUCTION

We consider a discrete memoryless source that is transhatter a channel affected by inter-symbol
interference (ISI) and additive white Gaussian noise (AWGNspecific scenario is the magnetic recording
channel. To combat ISI in this channel, we typically use anaéiger to modify the channel read-back
signal into a pre-determined partial response (PR) tafgeChapter 9]. The equalized magnetic recording
channel is also known as a PR channel and specified by a PRagmoigh For maximum likelihood
detection, we can use the Viterbi algorithm applied to tledlisr corresponding to the PR polynomial.

In a magnetic recording system, we often employ a concadraiding scheme where the “inner code”
is the PR channel and the outer code is an algebraic block[@o@hapter 4]. Partial Response Maximum
Likelihood (PRML) [1, Chapter 9] is a detection techniqueedigo select the most-likely bit-sequence
out of the inner channel and an algebraic outer code sucheaRdhd-Solomon (RS) code is used for the
residual errors.

The classical bounded-distance RS decoder correctly ésctmda unique codeword if the number of
errorst is less than half the minimum distande The initial concept of “list-decoding” was introduced
independently by Elias and Wozencraft [3], [4]. List-decadis a technique that, for a given received
vectoruv, efficiently generates a list of codewords within a Hammimgjathcer from v, wherer is greater
than or equal ta. Guruswami and Sudan [5], [6] were the first to develop an @ggr that solves the list-
decoding problem in polynomial time. Their approach tadistoding consists of polynomial interpolation
and factorization. In Section Il, we present the List-GM@aithm which combines Guruswami and
Sudan’s list-decoding with Forney’s [7, Chapter 3] Geneeal Minimum Distance (GMD) decoding into
a sequential erasure list-decoding attempt at soft-detiBieed-Solomon decoding. Koetter and Vardy
[8] have also developed a soft-decision algebraic decodiggrithm for RS codes based on Guruswami
and Sudan’s polynomial interpolation. Both the List-GMDOdahe Koetter-Vardy algorithm take as inputs
symbol-wise reliability information (or APPs) from the i@nPR channel. One way to approximate the
symbol-wise APPs is to apply the original BCJR algorithm §®@}the inner channel and multiply the bit
APPs that form a symbol. However, in using the bit-produgtrapch, we may include invalid trellis

paths in the calculation. In general, to get reliabilities Fbit symbols we are interested in
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and for allk =il, i =1,2,---. This could be done by first calculating
Pr(u) | RY) 2)
and then obtaining thédimensional marginals

Pr (Ug—(z—n = | Riv) = Z Pr (U{V | R{V) ©))

N
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for ¢ € {0, 1}1. We could obtain the single bit marginals by

Pr(u=b|RY) = > pPr(u)|RY) (4)
ud {0,137 u=b
It is, however, infeasible to compute the conditional disttion Pr (u{ | RY) because the number of
points in the probability distribution is exponential i¥.

The symbol-based BCJR, much like the bit-based BCJR, useMé#hrkov properties of the source to
get around the exponential complexity of calculating tkdimensional marginals. Note that we cannot
compute thé-dimensional marginals from the product of the single-tdrginals and therefore, we cannot
multiply the bit APPs to calculate the symbol APPs.

To correctly calculate thedimensional marginals and, thus the symbol-wise APPs,isads a symbol-
based BCJR algorithm in Section Ill. Our method uses the eational bit-based trellis as in [9] and only
modifies the manner in which the probability functions areatpd when compared to the original BCJR
algorithm. Hoeher [10] was the first to develop a method ofwating thea posteriori probabilityof a
block of I consecutive bits. We however provide a description andvdioin that is aimed at applications in
the magnetic recording channel. We show through a concxer@@e that simplifications of the algorithm
can be made for the case of binary-input ISI channels. We et$end Hoeher's work by introducing
a reduced-complexity hybrid Viterbi-BCJR algorithm thatlaulates the reliability for the most-likely
symbol. In Section IV, we calculate the complexity of the Gawami-Sudan (G-S), Koetter-Vardy (K-V),
and classical Berlekamp-Massey (B-M) decoding algorittamd compare the number of multiplications
required to decode a codeword for each technique as a funofidhe code rate. In Section V, we
provide simulation results that demonstrate the perfoomamprovement of soft-decision RS decoding
over hard-decision decoding. We also quantify the extrapdation that is required to obtain the extra

improvement. Moreover, we show that using the APPs caledlal the symbol-based BCJR algorithm



as input to the soft RS decoders will produce a lower WER thsinguthe product of bit reliabilities.

These results can help evaluate applications of soft-degd®S list-decoding on practical systems.

Il. SOFT-DECISION REED-SOLOMON DECODING ALGORITHMS
A. Generalized Minimum Distance (GMD) decoding

Decoding using soft information improves performance negis GMD decoding [7, Chapter 3] was an
early approach at using soft channel information in thesdeniprocess. GMD decoding takes as inputs the
quantized received vecter = {vy, v, -+ ,v,} and its associated reliability vector= {ry,rs,- - ,7,},

where0 < r; <1 and1 < i <n. Each symbob; in the received vector has a corresponding reliability

r;. Denotec = {c¢y,¢q, -+ , ¢, } t0 be a lengtm codeword and define
. +1 =12
f(@,2) = (5)
-1 z#z
and
K‘Q:ZTz’f(Ui,Ci)- (6)
i=1

Forney proved in [7, Theorems 3.1]
Theorem 1:There is at most one codewordfrom a code of lengtlm and minimum distance for
which
r-c>n—d (7)

We can sort the reliabilities in order of increasing maghéuthat is,
TilﬁTiQS"'ST‘iSS"'STin- (8)

Define the indicator vector ag; = {qs (r1) ,qs (r2) ,- -+ ,qs (rn) }, Wherel < s <n and

< o
gs (rij) = . (9)

Forney proved in [7, Theorems 3.2]
Theorem 2:If r - ¢ > n — d, then for somes, q, - ¢ > n — d.
GMD decoding performs a series of erasures-and-errors-dendion decoding om by erasing thes

least reliable symbols according to[7, Chapter 3.2]. If a codeword satisfies the GMD criterion( 0,



it will be the unique codeword that does so and be found by kherighm.

B. List-GMD decoding

List-GMD decoding is a combination of G-S list-decoding drorney’s GMD decoding [11]. The
algorithm takes as inputs a received veat@nd its associated reliability vecteiwhich can be calculated
by, for example, the symbol-based BCJR or the hybrid VitBGUR algorithms to be discussed in Section
II.

TheList-GMD algorithm is as follows:

1) Fors=0,---,d—1do

a) for each zero position iny,, erase the corresponding positioned symbolinDenote this
vector withs erased symbols,.

b) perform erasures-and-error§-S list-decoding on v, thus generating a list of candidate
codewords for each decoding trial.

2) Select the most likely codeword from the union of the listpudby the decoding trials.

For an(n, k, d) Reed-Solomon code witherasures, the error correction bound of G-S erasures{aose

decoding is given by [6, Theorem 16]:

7(s) < (n—5) —/(n—s) (k- 1); (10)

that is, we can correct up to(s) errors when we apply erasures-and-errors list-decodirg fteceived
vectorv with s symbols erased. List-GMD decoding will perform a seriesistfdecodings and attempt
to correct up tor(s) errors and fill ins erasures fos € [0,---,d — 1].

We can skip unnecessary List-GMD trials by using the refetigiven in an errors-erasures table. For
example, Table | provides the list errors and erasures degambmbination for the5,2,4) extended
Reed-Solomon code ovéfF (5). The list of codewords generated by the 2-erasures caseamithin all
codewords produced by the 1-erasure case, because the se®m differ by an erasure which can always
be filled-in correctly. To run List-GMD on a received vectag only have to run the algorithm once for
every value ofr (s). For the cases where multipleevaluate to the same(s), we only have to list-decode
the case with the largest(s) + s combination. Moreover, the errors-erasures table onlyedég onn,

k, ands. So we would only have to generate the table once for each befitge we begin List-GMD

decoding.
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TABLE |
ERRORSERASURES TABLE FOR THE5, 2, 4) REED-SOLOMON CODE

List-GMD decoding can be computationally intensive beeatlge algorithm involves a series of list-
decodings. We can derive a Forney-like bound and use thigridund to estimate the algorithm’s

performance. The minimum List-GMD threshold can be showZ]j {tb be

7(s) n—s n
r-c Z I'Ilsil'l Z —TZ']. + Z ’T’Z']. - Z Tij (11)
j=1 j=T7(s)+1 j=n—s+1
for s € [0,1,---,d—1]. Any 7 (s)-consistent codeword will have an inner product greaten traequal
to (11).

C. The Koetter-Vardy algebraic soft-decision decoding

Koetter and Vardy [8], [13], [14] developed a polynomiahg soft-decision decoding algorithm based on
G-S list-decoding. Koetter and Vardy’s approach uses motyal interpolation with variable multiplicities
while Sudan’s technique uses polynomial interpolatiorhviiked multiplicities. For an(n, k,d) RS code
defined ovelGF (q), the Koetter-Vardy (K-V) algorithm generates a size n multiplicity matrix M =
{m;;},i=1,--- ,gandj =1,--- n, from channel posterior probabilities for a maximum poksip n
interpolation points. The allocation of multiplicities the ¢ x n matrix M is done by a greedy algorithm
[14, algorithm A]. Each entry ifM can be a different non-negative integer. G-S list-decodiag be
viewed as a special case of the K-V algorithm with a multipfienatrix M that consists of one and
only one nonzero entry in each column and each entry has the galue. The K-V approach allows the
more reliable entries itM to receive higher multiplicity values and this yields theggdial for improved
performance.

The complexity of the K-V algorithm depends on the Cost ofriindtiplicity matrix, defined by Koetter
and Vardy [14] as

C (M) & % SN miy(miy+1). (12)

i=1 j=1



Let C' = C'(M). The computation of the interpolating polynomi@j; (X, Y") is equivalent to solving”
linear equations. A straightforward method of solvingddy; (X, Y) is Gaussian Elimination, however, its
complexity is on the order of (C?3). In Section IV-A, we discuss Koetter's fast interpolati@thnique
that will reduce the complexity t@ (LC?) where L < C. Nielsen [15], Olshevsky and Shokrollahi
[16] also have proposed different reduced complexity methof finding Qn (X,Y) that are on the
order of O (kC?) wherek is a constant. The computational complexity of Koetterelés algebraic soft-
decision decoding can therefore be high. Thus, we wouldtbkese a threshold condition to estimate its
performance.

Koetter and Vardy provided a threshold condition for siniolain their paper [14, Corollary 5]. Given
a codewordc, define[c] as aq x n matrix. Let each row index ofc] represent an elemegt € GF (q);

then[c|, ; = 1 if ¢; = (; and[c]; ; = 0 otherwise. Define the score as

Sm(e) = (M, [d) = DY mijei, (13)

i=1 j=1

Koetter and Vardy proved tha&py; (X, Y) has a factoy” — f (X), where f (X)) evaluates ta, if
Sm(e) 2 v2(k-1)C. (14)

The threshold condition of (14) is not tight; that is, codesithat do not satisfy (14) may still be in the
K-V output list.

[1I. A MODIFIED BCJRALGORITHM FOR NON-BINARY SYMBOLS
A. Description and derivation
Let o € GF(2") be an information symbol. There ar®its per symbol and we can map each symbol in
GF(2') to a distinct bit pattern; that isp £ (b_1,b;_s,--- , by), whereb; € GF(2). Letu £ U'E_(H) be
the information symbol mapped to the input bit sequence fiiame k£ — (I — 1) to time k. Fig. 1 illustrates

the index labeling. The posteriori probabilitythat the information symbaod equalsy conditioned on



the lengthV received sequencB is:

PT(H:SO|R{V) = PT(Uk—(l—l):bl—la"'7uk—1:b17uk:b0|R{V)
ey =bi_1, - up = by, RN
_ p(uk (I-1) -1 - Uk 0 1) (15)
p(RY)

1 /
= WZZP(@ZSO?Sk:SuSk—l:S’R{V) (16)

The equivalence in (15) is obtained using Bayes’ rule and {d®btained using the principle of total

probability. The joint pdf can be rewritten as

p(u=¢,s,=s s =5,RY)
= plu=g,si=s501=5 R Ry o 1), Riy) (17)

- p (Rl]cv-i—l | U=,k =S,k = Slv R]f_lv Rl]z—(l—l))

‘P (ﬂ =@,k = S§,8k—1 = 8,7 Rllc_ly Rllz—(l—l)) (18)
= D (Rl]cv+1 K 3)
plu=¢,sn=5s=5 R R ) (19)

= (B lsk=5)

P (u=@sn =9 Ri_qopy [ sk = 5 R7)

P (sk =8, B (20)
= (B lsi=5)

P (=50 =8 Ri_gy | 6= )

p (sp—1 =5, Ry (21)

= Br(s) - 75@_(1_1),1@)(3,7 s) - ak—l(sl) (22)

The termg;,(s) is called the backward state metric, the teyfn , ,, , (s', s) is called the branch transition
probability, and the ternay,_,(s’) is called the forward state metric [17, Chapter 2]. Goingrfr(17) to
(18) and from (19) to (20) we apply Bayes’ rule to the joint lpabilities. Going from (18) to (19) and
from (20) to (21) we apply to the conditional probabilitideetMarkov property that events after timke

only depend on the current statg and are independent of past observations.



one symbol duratior, bits

Ye-t-1) Yk-0-2)  Yk-(-3)

N TN

k-(1-1) k-(1-2) k=(1-3)

Fig. 1. A simple 2-state trellis to illustrate the indicesedsin the symbol-based APP derivations. The input bit secpien =
(bi—1,bi1—2,--- ,bo) is marked by the highlighted path.

The branch transition probability can be expanded as

722_(1_1),]@) (Slv S) =D (Q =@, 8 =S, Ri—(l—l) | Sk—1 = 5/) (23)

= Pru=¢|s=5)

p (s =5, Rllz—(z—n lu=p, s, =5) (24)
= Pr(u=¢y)

Pr(sp=s|lu=¢,sp1=5)

p (Rllz—(l—l) | sk =s,u=p, 5,1 =5) (25)

From (23) to (24) we apply Bayes’ rule in the following form:

plr,y|z)=plx|z2) ply]| =) (26)

where thex term is “u = ¢,” the y term is s, = s,R’,j_(l_l)," and thez term is “s,_; = s.” From
(24) to (25) we again apply Bayes’ rule of (26) to the @xﬁsk s, RF 1) |u=¢, sk = s’). Also
notice that the symbacd priori probability is state-independent and therefaPe,(u = ¢ | sy = §) is

equivalent toPr (u = ). The second probability term in (25) is either a zero or oag i.

(

1, if states at timek is connected

. to states’ at timek — |
Pr(sk=s|lu=yp,sp_1=5)= (27)
via the input sequence = ¢;

0, otherwise
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Therefore,

722_(1_1),;3) (s, s)
=Pr(u=¢)-p (Rliz—(z—n | sk =s,u=¢, s = 8') (28)
if states’ at timek — [ and states at time k& are connected through the input sequence ¢. The pdf

P <R’,§_(l_1) | sk =s,u=p, Sk = s’) is a function of the channel characteristic; in a partiapoese

channel with AWGN the pdf can be calculated as:

1 ! -2l (R —ey)?
( ) e 252 (29)
2ro
whereg? is the noise variance and;_1,¢;_o, - -+ , o) is the partial response channel output sequence that

corresponds to the input sequengé (b;_1,b;_s,--- , by).

The forward state metrioy(s)

ag(s) = Zak_l(s') vk (8, 8) (30)

and the backward state metrik (s)

B (s) = Zﬁkﬂ(sl) Yeg(s, 8) (31)

can be updated as in the original BCJR [9].

B. Simplification for ISI channels

There are simplifications that can be made for the case ofinaut ISI channels in order to save
on complexity. The simplifications come from the fact tha¢ tstates represent subsequences of the
input sequence. To illustrate this point, consider the alted E2PR4 channel, with transfer function
h(D) = (1 — D) (1 + D)’. This channel has a memory »f= 4 and, thus a 16-states trellis representation.
We calculate the posterioriprobability of the all-zeros 8-bit byte ending at tirke

Pr(y:Q|R{V):]ﬁZZ})(g:Q,skzs,sk_gzs',R{V) (32)

s s’

The joint pdf can be expressed as:
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Input: 00000000 3 4
ial 142D - 2D -
Current State: 0000 E2PR4 Polynomial: 1 + 2D - 2D - D

Fig. 2. E2PR4 Shift-Register Configuration

p (Q =0,5,= 5,58 =5, R{V) = a5 (s) 7?39%?290 . (s) (33)

Since there is exactly onethat is reached from’ through the all-zeros symbol, the double sum in (32)
becomes a single sum. Define the set of states t8 be{Sy, S1,. .., S2_1}. For the all-zeros symbol,
the ending state at time k£ has to beS,, so the sum is simply over all starting statésat time k — 8.
The number of states per stage for the E2PR4 channgl=s|S| = 16 so there will be 16 terms in the
sum. Each term takes 2 multiplications (one tgrand the other for3) plus the 8 multiplications for

calculating they. The result is a total of
Ngeneral = (2 + 8) S+ (S — 1) =175

operations.

For a binary input ISI channel, we notice that the state ism&hed by a string of length input bits.
In Figure 2, we see that the channel state is forced back taltteeros state after the first = 4 bits
of the all-zeros byte are shifted into the channel, regasdte the starting state)’. Therefore, we can

rewrite (33) as
p(u=0,5=5s0-5=5,R) = ars(50) 1% (S0, 50) Br (So) (34)

The number of operations in (34) is 2 multiplications (one &9 and the other for3) plus the 4

multiplications for calculating the. The total is therefore,
Nigr=24+4=6

operations. There is a factor ©75/6 ~ 29 reduction in complexity. In general, for a channel with meyno
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v, we can calculate the joint pdf as:

p(u=¢,sp=ss1=5,R})
=p(u= (bi_@+1), ,b0) Sk = 5, Sp—(—r) = 5", RY)

Bi_(vi1)ree b
= i) () AT (57 5) B (5) (35)

wheres” is the state that corresponds to the shift register confiigurafter an input ofv bits.
As a result, we would only need

N[S[:2+(l—l/)

operations, as opposed to

Ngeneral = (2 + l) 27 + (2,/ - 1)

operations.

C. The Hybrid Viterbi-BCJR algorithm

If we are only interested in the most-likelybit symbol, we can apply a variation of the symbol-based
BCJR to further save on complexity. The procedure consis{§) sunning the forward updates until the
time instancek — (I — v); (ii) running the backward updates until the symbol boundaryrae #; (iii)
applying the Viterbi algorithm starting at timewith the initial metrics and working our wayackwar ds
to timek— (I—wv); (iv) multiplying the Viterbi metric for each state at tinke- (/—v) by the corresponding
« and choosing the state with the largest product. Since tlniseplure incorporates aspects of both the
Viterbi algorithm and the BCJR algorithm, we call it the HibWiterbi-BCJR algorithm.

The details of the algorithm are described below. It is agsiithat we have a trellis for an ISI channel
with memoryv; that is, there ar@” states that are in one-to-one correspondence witl2”appossible

binary strings of lengthv.

THE ALGORITHM
The BCJR Phase

Run the BCJR algorithm storing the forward metricat the time instancels— (I—v) and the backward
metrics G at time instanceg, wherek =il, i =0,1,2,..., N, and N, is the number of symbols to be

detected.
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The Viterbi Phase

1) Initialization The backwards Viterbi metrics at timee 1, are initialized with the BCIR?’s at
time k; that is,

e (S;) = BF i=0,1,...,2" — 1. (36)

7

2) Propagation (The Viterbi Phase)
For each state’ € S attimej =k —1,k—2,... ) k— (I —v).
a) Calculate the accumulated branch metric for the two edgesecting state’ at timej to a
state at timg + 1. Let the two states at timg+ 1 that connect ta’ be s, ands; corresponding

respectively to the edges with labélsand 1. The accumulated branch metrics are given by

BL(s") =90 (8 so)mg(sy),  b=0,1. (37)

b) Compare the two accumulated branch metrics and seletartest. Let us say that the selected
branch has label*.

c) Update the state metric and the survivor sequende ¢;(s) we store the state at time+ 1
corresponding to the sequence of largest metric startingnatk# (with metrics given by the

(4’s) and ending at state at time j. The update equations are
pi(s) = Ay (s) (38)
%’(3/) = Sp* (39)

3) Termination

For each state at time — (I — v), calculate the overall state metricy,S;), as
)\(Sz) = Mkz—(l—u)(Si)Oéi (40)

Find the states* with the largest overall metric. The most-likelybit symbol, p*, made up of bits
from positionsk — [ + 1 to k is given by thev bits corresponding to stat& followed by thel — v
bits obtained by reading off the edge labels from the sungemuence;.__,)(s*). The probability

of the most-likely symbol is given by

Pr(¢*|RY) = A(s™)/p(RY), (41)
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andp(RY) is obtained from the forward portion of the BCJR algorithrh [9

In the description of the algorithm, the BCJR and Viterbi ggmare separated for ease of understanding.
In practice, to reduce both the latency and the memory reménts, the backward BCJR propagation

and the Viterbi algorithm can be performed in parallel.

V. COMPLEXITY ANALYSIS

In order to provide a complete tradeoff analysis of the listatling algorithms. We calculate the
complexity of Guruswami-Sudan (G-S), Koetter-Vardy (K-\And Berlekamp-Massey (B-M) algorithms
by estimating the number of multiplies required to decodérart) RS codeword for each technique as

a function of the code rate.

A. G-S list-decoding

The maximum error radius of G-S decoding is given by [6]
T<n—+/n(k—1).

The multiplicity required To decode to the maximuimis

—1n+\/n2 k=12 —4(02—n(k—1)
22 —n(k—1)) ’

whereoc = n — 7. The Cost (or number of linear equations) required to sobveaf codeword given the

m—+ 1
C=n )
2 )

The solution can be found by inverting @ x (C + 1) matrix. If Gaussian Elimination is used, the

parameters is

complexity will be on the order of) (C?) or C* multiplies. This number can be reduced by using
Koetter’s faster interpolation [18].

Koetter’'s approach, given in Fig. 3, is a recursive procedhat constructs the interpolating polynomial
Q (z,y). The algorithm starts with a set éf+ 1 basis polynomial&:, = (1, Y,y ,yL) and recursively
updates each polynomial in the set fOriterations. At each iteration, the set of polynomialss; =
(gi0s9i1,- -+ ,gi1) IS partitioned into two: the elements that satisfy the nextDZH, Hasse derivative

[18], [19] evaluation constraint]y, and the elements that do no,. If all elements satisfy théi + 1)th
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Go={90j0,90,1,---r90,L}
Enter ={ y'} forj=0,1,..L
i=0

no ;
> o Q,(x,y) = min g¢
i<=C 0 O<:j<:LC,J

yes

Jo=1J: D,‘+1(9I.j)= 0}
Ji= {j:D,‘+1(g,.j) #0 }

f=ming.. = argmin g..
N i
jinJ g4 jingy "

i=i+1

« Iier % |«
yes
L o=[9..,f
95179
no
L | 9. =[xf,f
i+1,j [ ]Di+1

Fig. 3. The Koetter fast interpolation algorithm.

constraint, assigriz;,; = G; and increment; otherwise, enter into the sub-loop to update [18] each
element in the set depending on one of three conditions. Tignpmial f is one with the smallest
(1, k — 1) weighted degree [6] iV; andj* is its index. McEliece showed [18] at the enddfiterations,
each element in the lisGc = (g9co0,9c1.- - ,9c) Will satisfy all C' linear constraints. We select
the polynomial with the minimum degree to I6g(z, y). Koetter’s algorithm, therefore, has an overall
complexity ofO (LC?) because there ar@ iterations with each having + 1 operations to update one of
L+1 bases. The numbdr is much less thad' and the saving in complexity versus Gaussian Elimination
is clear. Another description of Koetter’s fast interpaatcan be found in [20].

The Roth and Ruckenstein algorithm [21] is used to faGtéx, y) into candidate codeword polynomials.
The approach has a complexity @f((ﬁlog%) k(n+ £Iogq)), where/ < L is the maximunmy degree of
Q (z,y), and is much less thaf? (LC?). The G-S algorithm, thus, would take abal{ ZC?) multiplies

to decode a codeword.
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Algorithm 1 An approach to approximate the least Cost required to K-\bde@a codeword.
1) Initialization:: =0, S =0, A=0,0c =n—7, M = [mg,mq,--- ,mp_1] =[0,0,---,0]
2) While S < A,
a) Mmod(i,n) = Mmod(i,n) + 1
b) S =37 mu;
0) C =Y ( o ):
d A=,2k-1)C,
e)i=1i+1,

3) Returns, C, andM;

B. K-V soft-decision list-decoding

The actual Cost to K-V decode varies with many factors suclhascode parameters, the channel
decoder, and the the channel SNR. We avoid the need to trankasy variables and therefore, estimate
the K-V complexity by Algorithm 1. This approach is in fact eeasure of the G-S algorithm but with
weighted multiplicities.

To describe the algorithm, we first perform a hard-decisiarntlee reliability matrix by selecting the
most reliable symbol at each of thereceived positions. Assume that there arerrors in the received
vector and they all occur at the lastpositions of the received word. In a round-robin fashion Weta
multiplicity to each of the: positions and continue to do so until the Score of the redeiverd is larger
than A = /2 (k — 1) C. This C can be considered as the minimum Cost required to succlyskiyY

decode. We again can use Koetter's fast interpolation to @rid, y).

C. The Berlekamp-Massey decoding

The complexity of the Berlekamp-Massey algorithm as giverj22, Figure 7.7] is on the order of

O (t(n+4t)).

D. Complexity comparison

We plot the number of multiplications required to decode deseord overG F' (256) versus the code
rate for the three algorithms discussed in Fig. 4. The toprdiqulots the gain in error radius — ¢t in
using G-S list-decoding versus classical decoding. We Isaethe extra error correcting power of G-S
list-decoding diminishes with increasing code rate. Thedwo figure plots the number of multiplications
required to decode a codeword. We notice that G-S decoditigetonaximumr requires many order of

magnitude more computations than B-M decoding over allstaiat K-V list-decoding has a comparable
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n=255 over GF(256)
120 T T T T
— 1t
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— G-S:0(LCH
30 - = K-V (estimate)
=+ B=M: O(t(n+4t))

multiplications per codeword

Fig. 4. Comparing the complexity of G-S, K-V, and B-M algéritis required to decode a codeword o¢eF (256).

| N=255 over GF(256)
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: : :
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rate

Fig. 5. Lvs.C.

complexity to B-M for rates less than 1/3. This indicatesttiav decoding is an efficient alternative
to B-M decoding at low rates and without a compromise in penénce if the symbol reliabilities are
accurate. The complexity of K-V decoding, however, conesrtp G-S decoding with increasing rate. The
tradeoff between complexity and performance for list-di#eg at high rates is small.

To verify that the number of basis polynomidlss in fact, much smaller tha@’, we plot their ratio in
Fig. 5. This ratio also indicates the savings in using Kastfast interpolation over Gaussian Elimination.
The reduction in complexity is more than two orders of magwet over all rates for G-S decoding and

for K-V decoding of rates greater than 1/3.
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N=255 over GF(256)
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Fig. 6. Complexity of Roth-Ruckenstein ovér (LC?).

To confirm that the Roth-Ruckenstein factorization has ahmieses complexity than bi-variate poly-
nomial interpolation, we plot the ratio of their complexity Fig. 6. The Roth-Ruckenstein factorization
requires at least 5 orders of magnitude less computatianititarpolation over all rates for G-S decoding

and for K-V decoding of rates greater than 1/3.

E. Complexity control

We can reduce the complexity of the G-S algorithm by decodm@nly a few errors beyond the
classical bound instead of the maximumFig. 7 shows the multiplicity required to decode up to the
desired error radius We see that the multiplicity has an exponential ramp as e eadius approaches
7, but is still reasonable for a few errors beyandVe can then compare the complexity of decoding the
RS code over7F (256) versus rate for the case oft 1 andt + 10 errors as given in Fig. 8. We see that
for rates less than 1/3, the extra computation required tailan extra error correction is manageable.
There is the flexibility in choosing the appropriate G-S emadius according to the computing power

available in a system.

V. SIMULATION RESULTS
A. Comparing the performances of Reed-Solomon decodihgitpees over a partial response channel

We simulate the performances of G-S, K-V, List-GMD, GMD, dhd classical bounded-distance (B-M)
Reed-Solomon decoding algorithms on the EPR4 channel witister functiorh, (D) = (1 — D) (1 4+ D).
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RS(255,131)
100 ;
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Fig. 7. The required multiplicityn to decode to an error radiusfor the R.S (255, 131) code.

N=255 over GF(256)
10 T T T T T T

Tt

multiplications per codeword

Fig. 8. Comparing the complexity of G-S decoding to only 1 andt + 10 versus the B-M algorithm for a RS code ov@# (256).

Our system model is shown in Fig. 9. It is a simple yet effextmodel that allows us to compare the
various RS decoding techniques. The matiixis what Koetter and Vardy referred to as tpeneralized
reliability matrix [14] and applies to channels with memory.

We first discuss the performance of G-S list-decoding. Tduaxa the list-decoding performance, we
can run the actual algorithm or simulate the performance ofearor correcting code by declaring a
successful decode whenever the Hamming distance of thentitited codeword and the received vector
is less than or equal te. The simulation assumes that the correct codeword is alsajected from

the list. Nielsen [15, Chapter 3, Section 3] showed that tlebdagbility of a list with multiple codewords
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System Simulation Setup

Reed RS symbols Partial M _| Symbol Decoder | .
—= Solomon | Response ! based BCJR |«
Encode L

Fig. 9. Partial Response system model to compare variouseR&dahg techniques.

becomes smaller as the code lengthand alphabet sizg increase. At code parameters of practical
interest in the magnetic recording setting, list-decodinijalmost always produce either a one-codeword
list or a zero-codeword list. For example, for(265,223,32) RS codePr (|7 — consistent ligt> 1) <
6.8427 x 107!, Furthermore, the probability of choosing incorrectlyrfrdghe list of candidates is also
small. For these reasons, the simulation results obtamedigh our assumption will closely approximate
the actual decoding performance. Fig. 10(a) compares tihre Biwor Rate (WER) of d15,7,9) RS code
with 4 bits per symbol over the EPR4 channel with additivete/l@baussian noise (AWGN.) Fig. 10(b)
compares the relative complexity of the algorithms ovessilzal B-M decoding. The symbol reliabilities
are generated by the symbol-based BCJR algorithm desanb®ection I1l. GMD provided a slight gain
of 0.15 dB over classical decoding with 5X the computationlevts-S list-decoding provided about 0.5
dB gain over classical decoding with about 50,000X the cdatmn. Further performance improvement
can be obtained by using soft-decision list-decoding.-GMD provided about a 1 dB gain over GMD
because we apply sequential list-decoding instead of s¢iqQuelassical decoding. The performance of
the K-V algorithm is affected by the total number of intemgadn points used. In our simulation, we use
a total of 5n interpolation points, where is the length of the RS code. List-GMD provided about 1.2
dB gain over classical decoding with somewhere between0BXnd 300,000X the computation and
K-V provided the same gain with about 2000X the computatiime complexity of the K-V algorithm
can be reduced by using less number of interpolation poiatswith a tradeoff in performance. The
hybrid Viterbi-BCJR algorithm can be used in place of the bgirbased BCJR algorithm to generate the
reliabilities of the most-likely symbols in the cases of GMIDd List-GMD decoding.

To see that the probability of selecting an incorrect codemis low, even for codes over small fields
such as theRS (7,3) code, we plot the average list size and the incorrect sefectitio versus SNR on
the EPR4 channel in Fig. 11(a). An incorrect selection isntedi when the correct codeword is in the
G-S generated list, but not selected as the output codeWdedsee that the average list size decreases

with increasing channel SNR and that the probability of ciétg the wrong codeword in the list is about
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RS(15,7) on EPR4 with SBCJIR; K-V: Spv.s:75' RS(15,7) on EPR4 with SBCJR; K-V Spvs:75'
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Fig. 10. (a) Performance and (b) complexity comparisons «,d&-V, GMD, list-GMD, and B-M decoding techniques on the RzP
channel.
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Fig. 11. Average list size and incorrect codeword selectéadio: (a) RS (7,3) and (b) RS (15,7) on the EPR4 channel.

4% or less. For thekS (15,7), shown in Fig. 11(b), the average list size approaches 1 &NR above
5 dB and there were no incorrect codeword selections obddarnvelecoding 1200 codewords over all
SNRs. This observation agrees with Nielsen’s calculati@t for codes over large fields, the list size on
average will be 1 and the probability of selecting an inctr@deword from the list will be small.

In Section II-B we stated a loose lower bound for List-GMD aléiag. In Fig. 12, we plot the threshold
performance of K-V, List-GMD, and classical decoding faor2a5, 223) RS code ovefiF' (256). The List-
GMD curve is the calculated lower bound, while the K-V curgeobtained using the threshold condition

(14). The actual List-GMD performance will be above the euprovided in the figure. The actual K-V
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Threshold performance of RS(255,223) SBCJR on EPR4; KV: Spts:25500
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Fig. 12. (a) Threshold performance of List-GMD and Koeltardy decoding of 4255, 223) RS code ovelGF' (28). To reduce simulation
time, the List-GMD performance is obtained using the loweund given in (11) and the K-V performance is obtained usiregthreshold
condition given in (14). (b) A comparison of the complexigtios over classical B-M decoding.

performance will be below the curve shown in the figure. Thedhold K-V curve indicates a 0.5 dB
gain and the List-GMD lower bound indicates a 0.75 dB gairr @l@ssical RS decoding. The complexity
ratios over B-M decoding is given in Fig. 12(b). We see thatBiecoding has a reasonable complexity
when compared to the B-M algorithm. However, G-S and K-V di#og of a codeword requires 10 orders
of magnitude more computations than B-M decoding. Moreaver flexibility in multiplicity allocation

in K-V decoding allows it to have a much better performancengiexity tradeoff because it can obtain a
larger gain at the same complexity as G-S. Because of theGighcomplexity, List-GMD decoding is
less attractive in decoding a high rate code than decodimgdte less than 1/2 code of Fig. 10. We can
also vary the number of interpolation used in K-V decodingatculate the performance and complexity
tradeoff as seen in Fig. 13. Usirgn number of interpolation points is enough to guarantee aebett

performance than G-S decoding.

B. Symbol-based BCJR versus bit-product BCJR

We compare the performance of a magnetic recording systamnuses the bit-product reliability
measures to one that uses the symbol-wise APPs to make éaigieths on the information symbols.
The simulation platform is shown in Fig. 14 and consists @& fibllowing steps:

1) Generate a stream of random numbers according to a unid@stribution in the range of0, 1).

Quantize each random number into one2bkqually spaced levels, where each level represents a
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Fig. 13. (a) Threshold performance of K-V decoding accaydimthe number of interpolation poin,:s used. (b) The relative complexity
ratio over B-M decoding.
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Fig. 14. Simulation setup

symbol inGF (2'), thus generating a stream of random information symhdis GF (2').
2) Convert the symbol streaminto bits by mapping each symbol G F (21) into a block of | bits.
3) Encode the bits using the polynomial specified by the PRinéla
4) Corrupt the encoded bits by adding independent and ichdhti distributed (i.i.d.) samples of
Gaussian random variables.
5) Compare the two BCJR-based approaches by
a) applying the conventional BCJR algorithm to obtain bitPsRand take the product to generate
the symbol reliability measures and make hard-decisiontheinformation symbolsd) based
on the reliability measures, or
b) applying the symbol-based BCJR to generate the true syABs and make hard-decisions
on the information symbolsuf based on the symbol APPs.
6) Compare the decisiong)(with the transmitted symbols) to calculate the symbol error rate (SER)
for each approach.

7) Convert the decisions:] and the transmitted symbolg)(into bits and calculate the bit error rate
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(BER) for each approach.

We plot the simulation results generated by the ERR4 D) (1 + D)* channel with 8 bits per symbol
in Fig. 15, the E2PR41 — D) (1 + D)* channel with 8 bits per symbol in Fig. 16, and the EPR4 channel
with 4 bits per symbol in Fig. 17. Each of these figures has two-figures. The sub-figure (a) plots
the symbol error rate (SER) curves and the bit error rate (B&tRves generated by the symbol-based
BCJR approach and the bit-product BCJR approach. The sukefitp) plots the reduction in SER using
the symbol-based BCJR calculated by- %mf We see that in all three scenarios considered, the
symbol-based BCJR produced the lowest SER and the (bidp&@JR produced the lowest BER.

It is interesting to note the effect that the trellis comtigand the symbol size have on the performance
difference between the symbol-based and (bit-based) B@iRitams. If we letS be the number of states
per stage and be the number of bits per symbol, then the number of validpatdr symbol will beS
independent of and the total number of possible paths (both valid and idyaler symbol will beS’. We
therefore would expect the SER performance improvemensinguthe symbol-based APPs to increase
with increasing trellis complexitys and increasing bits per symbbl The effect of trellis complexity is
verified experimentally by comparing the relative SER piot$ig. 15(b) and Fig. 16(b). Symbol-based
BCJR led to a maximum of 7% reduction in SER over the bit-popd@CJIR on the EPR4 channel with an
8-state trellis and led to a 10% reduction in SER on the E2RRhel with a 16-state trellis. The effect
of symbol size is confirmed by comparing the relative SERsIntFigures 15(b) and 17(b). Applying
symbol-based BCJR to 4-bit symbols led to a maximum 5% réaluah SER and applying the algorithm
to to 8-bit symbols led to a maximum of 7% reduction in SER. §hsymbol-based BCJR can easily
provide a better SER performance by simply treating thdigrad a different manner.

Finally, we apply the reliability information generated the two approaches to the GMD [7] decoder
and the K-V decoder. We again refer the readers to [8], [1B}] for details. For the K-V decoder,
instead of simulating the actual decoding algorithm, wedube simple threshold condition discussed in
Section II-C. The simulation output generated by usin@®%b, 223) Reed-Solomon code on the EPR4
channel is plotted in Fig. 18 for GMD decoding and K-V decadiin GMD decoding, which uses only
the reliabilities of the most-likely symbols, symbol-bd48CJR led to a 0.1 dB SNR gain at a WER of
10~2. In K-V decoding, which uses the reliabilities of all fieldrsipols, symbol-based BCJR achieved a

0.4 dB SNR gain at a SER dbh—2.
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Fig. 15. (a) SER and BER for the EPR4 channel, 8 bits/symidote that to highlight the difference in the error rate cusyave have
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Symbol-based BCJR generates more accurate symbol reiegbithan taking the product of the bit-

reliabilities. Applying symbol-based BCJR to soft-decisidecoding of RS codes will lead to a lower

probability of decoding error than applying the bit-prod&C€JR.

VI. CONCLUSIONS

We have discussed soft-decision Reed-Solomon decodiogthlgs and their application in a magnetic

recording channel. The List-GMD and the Koetter-Vardy alipons can utilize reliability information

provided by the channel. The soft-decoding algorithms editgpm the classical hard-decoding algorithm
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K-V performance of RS(255,223) on the EPR4 channel with Spts:25500
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reliability information produced by the symbol-bas@@JR

at the cost of added complexity. We can manage the perforeremmplexity tradeoff in List-GMD by

limiting the decoding radiug and in Koetter-Vardy by controlling the number of intergaa points.

We presented a symbol-based BCJR algorithm that calcula¢esymbol-wise APPs fadrbit symbols.

Our method is an extension of the original BCJR algorithmasek the same bit-based trellis. The symbol-

based BCJR technique can be used to generate symbol-wise tARf¢ used by soft-decision decoding

algorithms for algebraic block codes ov@t” (2'). Simplification of the symbol-based BCJR algorithm

can be made when applying it to a binary ISI channel. We als@mdaoced the hybrid Viterbi-BCJR

algorithm which can be used when only the reliability of thestalikely symbol is desired. Simulations
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over a partial response channel show that symbol decisi@aeay using the symbol-wise APPs yield a

lower word error rate (WER) than the symbol decisions madedigg the product of the bit reliabilities.
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